A high-throughput platform to select nucleic acid-based bio-recognition elements
for electrochemical biosensors
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INTRODUCTION

 Challenge: Detecting rare mutations in a high-abundance wild-type (WT) background is key for precision cancer diagnostics, but standard methods (JPCR, MPS) are costly,

complex, and time-consuming.

« Alternative approach: Electrochemical biosensors are simpler and cost-effective but need better selectivity for low-abundance mutation detection.

 Presented solution: We developed a high-throughput platform to systematically evaluate and optimize the hybridization affinity of nucleic acid-based bio-recognition

elements for biosensor applications.

 Results: Screening 884 probes across 12 hybridization conditions in varying WT backgrounds (0%, 50%, 75%) identified highly selective probes for KRAS G12C, validated

using a photoelectrochemical (PEC) assay.

METHODOLOGY
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Fig.1l: Introducing an artificial mismatch between the capture probe and target enhances
discrimination by creating a double mismatch with the WT sequence, reducing hybridization stability
[1]. Using a 17-nt probe, 884 variants were designed by shifting the mutation across 17 positions and

testing four base substitutions (A, C, T, G) at each site.

Screening of bio-recognition elements
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Fig.2: 1) Hundreds of candidate bio-recognition elements (capture probes) that are flanked by PCR
handles are hybridized to a biotinylated MT or WT target. 2) Following streptavidin pull-down, 3)

probes are converted into a probe library 4) which is quantified by next generation sequencing (NGS).

PEC biosensor for KRAS G12C biomarker detection
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Fig. 3: PEC assay
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RESULTS
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Experimental and theoretical data of probe hybridization
to KRAS G12C and WT sequences
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Fig. 4: Top: Log-scale ratios of probe counts hybridized to MT and WT to assess probe specificity.
Bottom: Computational predictions based on the nearest-neighbor model and microarray data [3]. Red:

MT-perfect match; Green: WT-perfect match; Black: an extra single-mismatch to the WT.

Probe discrimination between KRAS G12C and WT targets
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Fig. 5: Top left: PEC results of the KRAS G12C biomarker, including WT and No target controls. Bottom
left: The design of 3 selected probes; probe 1 carries an additional mismatch to the WT-target, and probe 2
and 3 are perfect matches to the MT target with different binding position. Right: PEC measurements of

MT, WT or No target.

CONCLUSIONS

 High-Performing Probes Identified — among 884 probes tested, top candidates

showed strong selectivity for the MT-target.

this method accelerates biosensor

 Advancing Precision Diagnostics

development for improved cancer detection.
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